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Abstract
Computational complexity is a limiting factor for visualiz-

ing large-scale scientific data. Most approaches to render large
datasets are focused on novel algorithms that leverage cutting-edge
graphics hardware to provide users with an interactive experience.
In this paper, we alternatively demonstrate foveated imaging which
allows interactive exploration using low-cost hardware by tracking
the gaze of a participant to drive the rendering quality of an image.
Foveated imaging exploits the fact that the spatial resolution of the
human visual system decreases dramatically away from the central
point of gaze, allowing computational resources to be reserved
for areas of importance. We demonstrate this approach using face
tracking to identify the gaze point of the participant for both vector
and volumetric datasets and evaluate our results by comparing
against traditional techniques. In our evaluation, we found a sig-
nificant increase in computational performance using our foveated
imaging approach while maintaining high image quality in regions
of visual attention.

Introduction
The interactive visualization of large-scale, high-resolution

data is often hindered by the computational costs of rendering
algorithms coupled with considerable data sizes. While algorith-
mic optimizations and innovative data management strategies can
greatly improve run time rates, data size and complexity will con-
tinue to challenge our ability to present data in real time. In this
work, we propose a novel method to increase the efficiency of
rendering large datasets by strategically reducing the resolution
of the data display based on the inherent characteristics of the
human visual system. Rather than render a full resolution data set
across the entirety of the display, we leverage advances in tracking
technology to adaptively mimic the multiresolution behavior of
the human eye to accelerate the interactive rates of large-scale
vector and volume visualization. We have developed a system that
produces high-quality, interactive visualizations of large-scale data
that limits the resolution of the data display outside the viewer’s
gaze and thus achieves high frame rates while maintaining compu-
tational efficiency. As shown in Figure 1, our foveated rendering
techniques combine the strength of high- and medium-quality ren-
dering to provide exceptional resolution only in areas of visual
attention.

The human visual system is one of the most complex systems
in the human body, with a network of highly specialized cells that
process what we see in stages [LH08]. The fovea is the central
region of this system and is responsible for sharp, central vision.
The high spatial acuity of the fovea is due to the dense packing
of cone cells in this area, and acuity drastically falls off towards
the periphery as the number of cone cells also drops, as shown
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Figure 1. Gaze-contingent rendering enhances computational speeds by

rendering only important regions of a data set, determined by the viewer’s

focus, at high-resolutions, and all other areas at lower-quality. From left to

right, high quality rendering provides detail, but is computationally demand-

ing, medium-quality rendering increases computational speeds, at the cost

of visual resolution, while gaze-contingent rendering displays only the region

at the center point of gaze of the viewer in high-detail.

in Figure 2. Foveated imaging [GP98] leverages the nuances of
spatial acuity to dedicate computational resources to areas where
the visual system is most sensitive. Exploiting the fact that the
spatial resolution of the human visual system decreases dramati-
cally away from the point of gaze, foveated imaging allows for the
real-time processing of images, videos, and data in a way that is
seamless to the end user, but provides a significant improvement
in the performance of underlying applications.

In this paper, we present a gaze-contingent multiresolution
system that blurs and scales rendered images to facilitate foveated
visualization with smooth transitions from highly-focused to low-
resolution regions. Our primary contributions include the use of
face-tracking to drive adaptive-resolution visualizations, and the
modifications to well-known vector and volume rendering algo-
rithms to create compelling and computationally efficient imagery.
We demonstrate our foveated visualization system on large-scale
spatio-temporal vector and volumetric data and conduct a perfor-
mance analyses that shows a 2-2.5X frame rate improvement on
interactive explorations.



(a) (b)

Figure 2. Left, a graph of visual acuity showing how it decreases rapidly as

the distance from the fovea increases. Right, an illustration of the resolution

of our visual field. It is higher in the center but much lower in the edges

(peripheral vision). Image credits: Livingstone and Adams [LH08] (left) and

Johnson [Joh13] (right).

Related Work
Our system builds upon previous work on gaze-contingent

displays to focus the computational efforts to a specific region of
interest. Using importance-based volume and vector visualization
techniques, rendering is changed across the display in concordance
with our user-driven region of concern. This type of display is
similar to focus plus context methods which also change rendering
across a display to highlight features within a data set. In contrast
to our work, these features are often automatically discovered
through algorithms such as clustering or directly chosen by the
user, rather than based directly on the viewer’s gaze.

Foveated Imaging
The focus of much foveated imaging work is on reducing the

spatial resolution of transmitted video images with minimal effect
on perceived image quality. Geisler and Perry [GP98] introduced
a multiresolution system for low-bandwidth video communication
and demonstrated that foveated videos can preserve visual qual-
ity much better than compressed videos. Their follow-on work
produced higher quality videos and worked for variable resolution
displays [PG02]. Chang and Yap [CY97] demonstrated a wavelet-
based approach to generating foveated images through an adaptive
layout that weighed the blending functions for seamless images.
We use blending functions as well to ensure a smooth transition
for the viewer. The EyeRIS system [SRIR07] was one of the first
eye-movement contingent display (EMCD) systems and facilitated
near-real-time interaction with images through a combination of
custom hardware and software. A comprehensive review on gaze-
contingent multiresolution displays can be found in Reingold et
al. [RLMS03].

In the 3D graphics and virtual reality domains, foveated ren-
dering is becoming increasingly popular. Guenter [GFD∗12] ap-
plied foveated imaging to the rendering of traditional 3D scenes
and found a 5–6x improvement in the overall graphics performance.
Patney et al. [PSK∗16] used a perceptually-improved foveated
system to generate a perceptual target to reduce artifacts for inter-
active foveated rendering. They introduce a novel algorithm that
performs temporal anti-aliasing to address problems associated
with saccades and contrast enhancement to provide details that can
be perceived by the human peripheral system but may be lost due
to filtering.

Despite the important benefits offered by eye-movement con-
tingent display control to many areas of vision research, a ma-

jor limiting factor has been the unavailability of general-purpose
systems that enable flexible gaze-contingent manipulation of the
stimulus [SRIR07]. A second limiting factor has been the difficulty
of guaranteeing real-time performance to ensure an upper bound
on the delay between the occurrence of oculomotor events and an
update of the stimulus on the display. For these reasons, we turned
to face-tracking as a more robust method for identifying user gaze.

Focus-Driven Volume and Vector Visualization

Methods for displaying 3D volumetric and vector flow data
sets are common in the visualization community and include vol-
ume rendering [DCH88], streamlines [WS01, ZSH96, LKJ∗05,
HWHJ99, CYY∗11], glyphs [WSF∗95], and line-integral convolu-
tion (LIC) [CL93, SJM96]. These techniques are often modified
to improve performance by selecting regions of importance to
display with more fidelity (importance-rendering) or to provide
context to selected regions of interest (focus plus context). The
work most closely related to this work is foveated volumes by
Yu et al. [YCHZ05]. In contrast to our work, the boundaries for
the foveated region in the volume are clearly distinct, whereas
our focus is to provide a seamless transition between the foveated
region and the surrounding peripheral imagery.

For vector visualization, Schroeder et al. present an interface
for creating streamline visualizations of varying level-of-detail
based on the user’s input [SCK10] using a gesture-based inter-
face. Focus and context has been added to vector fields through
a deformation-based approach based on partitioning the volume
space of the flow field into blocks that are then deformed to reposi-
tion existing streamlines [TWSK14]. Importance fields have also
been incorporated into time-varying vector fields through tools
that allow users to explore large datasets and highlight features of
interest seamlessly [WYM08]. Telea et al. [TVW99] presented a
tree-based method for varying the density of glyph placement to
simplify regions of a vector field; however, the approach lacks the
ability to provide smooth transitions between levels of detail in
real-time. In contrast to our gaze-directed technique, the method
uses analysis of the vector field data to determine which regions
will be more or less simplified.

Automated importance-driven rendering to highlight features
in a volumetric dataset was introduced by Viola et al. [VKG05].
Illustrative techniques [RE01, BG07] have also been explored to
preserve context [BGKG06] and draw attention to features. Focus
and context has been used in application domains for the visualiza-
tion of complex vascular structures such as aneurysms [GNBP11]
and in augmented reality applications [KMS07] to preserve context
and to facilitate exploration of regions of interest. Interactive tech-
niques to author and view cutaways of 3D models were introduced
by Li et al. [LRA∗07] and in the VolumeShop [BG05] system.
These techniques let users author illustration-style imagery from
volumetric data to draw attention to features in the data. There
has also been significant research in applying lens-based mecha-
nisms to explore data in interactive systems and to draw a viewer’s
attention in static images. Tominski et al. [TGK∗17] provides
an extensive survey of various systems that use the lens-based
paradigm to visualize graphs, volumetric, spatio-temporal, flow,
and multivariate data, as well as individual text and corpus data.



Figure 3. This schematic conveys the overview of our system. We pre-compute a multiresolution Gaussian pyramid of the vector representations before we

start gaze tracking. Gaze tracking is conducted using a combination of Haar cascades and facial landmarks in combination with the Lucas-Kanade Optical Flow

algorithm. We use the face tracking to identify the center of the participant’s gaze. We use the center to identify the region of interest. This is followed by the

Foveated Rendering step where we blend the boundaries of the various multi-resolution representations used to generate a unified image.

Approach
Our approach for improving the performance of volume and

vector visualizations of large-scale datasets relies on incorporat-
ing face-tracking into the visualization algorithms to guide high-
resolution rendering to only areas of importance. Figure 3 shows
an overview of our system. The face-tracking system determines
the gaze-point within the scene, and we then use that gaze-point
to define the importance regions which, in turn, drives the multi-
resolution rendering. Algorithmic changes to both vector and
volume visualization techniques are required to incorporate the
varying resolution. In addition, because of the varying resolution
across a single image and the time-component of the data sets, tem-
poral coherence becomes an issue. Failure to maintain coherence
results in visual artifacts such as popping or flicker which can be
distracting or even detrimental in understanding a data set.

Face Tracking
We turned to face tracking as it beneficial over eye-tracking

since it does not succumb to the jittering effects of saccades. It is
also a marker-less system and does not require the use of the eye-
tracking hardware which can become cumbersome after prolonged
periods of use. Our face-tracking system is implemented using
commodity webcams. The Flandmark [UFH12] libraries are used
for detecting facial landmarks and OpenCV [BK08] is used for
reliable implementations of computer vision algorithms. To begin,
we use a Haar Cascades frontal face classifier [BK00] to detect the
face of the viewer and calibrate the system based on the centroid
of the face and its position on the screen. Tracking the location
of facial landmarks is done using Flandmark and specifically, we
track the location of the eyes, nose, and mouth of the viewer. The
Lucas-Kanade Optical Flow algorithm [BK00] is used to track
facial landmarks as the viewer’s face moves. If the user’s faces
moves too much, we re-run the classifier as shown in Figure 3.
Similarly, to manage situations with varying lighting or when
the facial landmarks may go off screen, we re-activate the Haar
Cascades classifier and re-identify facial landmarks at regular

intervals (approximately every 10 seconds or so). Figure 4 shows
a viewer looking at different focus points on the screen. As can
be seen in the figure, the centers of the circle move depending
on where the viewer is looking. As the face moves, the center of
interest moves to generate high resolution representations for that
part of the screen.

(a) The gaze of a viewer looking at
a critical point near the right side.

(b) A change of gaze leads to detail
being closer to the center.

Figure 4. Face tracking. Here, a viewer is seen changing his direction of

gaze which leads to the changes in position for the facial landmarks.

Interactive Importance Fields
We use the results of the face-tracking system to define an

importance field across the scene. An importance field is a scalar
field that describes areas of significance within the data domain.
In this case, the importance field is imposed over the space of
the vector field or data volume. At each location, a value of
importance is defined based on gaze and user input, and importance
is represented as a normalized scalar value representing the desired
information density at that location. For example, an importance
value of 1 would dictate the highest density of visual display
elements at that particular location, while a value of 0 will render
the minimal number of elements.

To create the importance field, we use the tracked gaze direc-
tion to define focus points. A focus point is controlled by defining
a position (p f ) describing the center of the point, a radius (r f )
describing the size of the important region, and a weight (w) de-
scribing the strength of contribution. A wave equation is used
to combine these parameters into a measure of the total impor-



tance contributed by the focus point to the entire importance field.
The wave equation is implemented as a 1D function that evalu-
ates importance based on the distance (de) from the position of
an evaluated point (pe) to the center of the focus point (p f ), i.e.
de = p f − pe. The importance value is highest at the center of the
focus point and decays as the point moves further from the center.

The choice of wave equation greatly influences both the look
and computational expense of the resulting visualization, and thus
we provide the user with a collection of equations to choose from:

Linear: Φ(de) = min(w− de

r f
,0)

Inverse: Φ(de) = w
1

1+ de
r f

Inverse Square: Φ(de) = w
1

(1+ de
r f
)2

Gaussian: Φ(de) = we
−( de

r f
)2

On a desktop platform, the choice of wave equation negligibly
affected performance, and thus the Gaussian equation was chosen
as the default, since it produces a smooth transition and visually
appealing transition of importance.

The importance field is stored as a 2D texture, populated with
importance values defined by sampling the wave equations of the
defined focus points. Figure 5, left, shows an importance field
resulting from two focus points, color mapped from lowest (blue)
to highest (orange) importance. To optimize for performance,
we only sample at the center of texture points and use bi-linear
interpolation to acquire values at any continuous point. While a
more accurate approach would directly evaluate the wave equations
for any point in the field, our approximation favors reducing the
number of evaluations to maintain interactivity.

(a) Importance field (b) Full resolution (c) Importance based

Figure 5. An importance map, left, and its impact on a full-resolution glyph-

based vector visualization, center, to create an importance-sampled vector

visualization, right.

User Interaction
While face-tracking is the main driver for creating our impor-

tance fields, we have discovered that allowing the user to manipu-
late focus points to also be useful. Examples of such interactions
include adding focus points to allow for regional comparisons,
removing saved points, or modifying the radius of focus points to
accommodate large-scale or small mobile displays. In addition,
focus points can be defined automatically by computing critical
points within a vector data set, if desired. These computationally
placed focus points can be used as a starting point for exploration
of the data, and may be particularly useful for large, or highly-
complex data sets that may take a substantial amount of user time

to interrogate to find features of interest. Beneficially, adding in
this capability to the system is trivial, and besides the algorithmic
modifications described below, required only the implementation
of simple keyboard or touch-based interfaces to achieve.

Figure 6. Foveated Zooming to further focus in on the region of interest.

The left figure shows the region of interest before zooming. The central figure

shows the effect of naı̈ve zooming on the center of the screen, whereas the

right figure shows our foveated zooming where we zoom in on the region of

interest as it is more relevant to the viewer.

In addition to edits of focus points, we have also implemented
foveated zooming which allows the user to zoom into the gaze-
based region of interest rather than using the center of the screen as
the zooming point. A user can use the keyboard to resize the region
of interest on the screen and the mouse to rotate or zoom and pan
the viewpoint as needed. Figure 6 shows a scenario where the left
image shows the user identified region of interest that is followed
by zooming in on it without foveated zooming (center figure) and
with foveated zooming (right figure). Given that the viewer is
fixated on that region, foveated zooming provides a viewer with
more details in that region of interest.

Vector Field Visualization
Glyphs and streamlines are the most commonly used tech-

niques for rendering vector fields. Both rely on the judicious
placement of visual elements as clutter and temporal coherence
can cause detrimental artifacts leading to poor efficacy of the tech-
nique and lowered understanding of the data. Importance fields are
used to place more detail in regions of interest, be they a higher-
density of glyphs or the seeding of more streamlines. However,
care must be taken that the aforementioned visual artifacts are
avoided.

Glyph Visualizations
Glyph-based representations of vector fields use strategically-

placed symbols to indicate the direction and magnitude of a field.
By varying the location and number of glyphs rendered in a partic-
ular region, the information density can be increased or decreased.
To maintain interactivity as well as temporal coherence, a glyph
pool is used to define the position and direction of the glyphs. A
glyph pool is a pre-calculated high-density collection of potential
glyphs, whose position and direction is fixed throughout the ex-
ploration. An example of a glyph field can be seen in Figure 5,
center. During an interactive session, glyphs are sampled from
the glyph pool, at rates reflecting the importance at each location.
The choice of whether a glyph from the pool should be rendered
is made using the glyph’s importance threshold. The importance
threshold is the minimum importance that must be present at the
glyph’s position for that glyph to be rendered.



Glyph Pool Sampling
Three methods for sampling the glyph pool and importance

thresholds are investigated: random, grid-based and mip-mapped.
Randomly selecting glyph positions and importance thresholds
was explored with the intention of creating a uniform distribution
of glyphs throughout the visualization. However, this approach
results in glyph overlap and pockets of unintended density away
from the focus points.

To alleviate the problem of occlusion, a grid-based sampling
of glyphs was explored. Glyphs were placed on a uniform or
jittered grid, which ensures glyphs do not occlude, as long as
nearby glyphs are scaled appropriately and the jittering is small.
We maintained the random assignment of importance thresholds.
Even though glyph overlap is suppressed, the random thresholds
still produce pockets of unintended densities.

To create a uniform spatial distribution of importance thresh-
olds, we use a mipmapping-inspired approach to assign importance
thresholds. This approach ensures that no two neighboring glyphs
have low importance values and thus avoids pockets of high den-
sity. It also ensures that there exists at least one glyph with a low
importance threshold in each region, thereby avoiding pockets of
low density.

Visual Effects
As stated before, the glyph pool helps maintain temporal

coherence by fixing glyph positions and avoiding glyph movement
during visualization. To further improve temporal coherence when
interacting with glyph-based visualizations, glyphs are gradually
faded in and out of the scene by modulating the opacity and width
of the glyphs. This provides a smooth transition and minimizes
any popping artifacts caused when glyphs quickly toggle visibility
when changing the importance field.

Streamline Visualization
Streamlines use lines to visualize the path a particle might

take if it was released into a vector field and its direction and
magnitude were influenced by the vector values it encountered.
The placement and density of the lines are determined by the
initial placement of seed points, that is, the starting locations for
the imaginary particle, and the number of paths generated from
seed points.

Choosing Seed Points and Streamline Density
Previous work [TB96, JL97] presents specialized methods

for placing streamlines at a uniform density, but these methods
present temporal coherence issues when changing the density.
For example, Jobard and Lefer’s method of image-guided seed
point generation lead to bad temporal coherence because the next
seed point is based on the previous streamline. If one streamline
changes, the positions of all the streamlines may change. We use
the randomized seed pool algorithm for seed point placement to
better maintain temporal coherence and reduce distracting visual
artifacts. This can been seen in Figure 7 in which overlays of
two visualizations with slightly different focus point positions are
shown. On the left, the results using image guided seed point
positions and on the right, randomized seed pool. Notice how the
image guide method causes changes in streamlines far from the
focus point, while the seed pool method only results in changes to
streamlines near the focus point.

Figure 7. Overlapping visualizations with slightly different focus point posi-

tions. Left, image guided seed placement results in almost every streamline

changing. Right, the random seed pool results in almost all streamlines fur-

ther from the focus point to remain constant.

The randomized seed pool algorithm for seed point placement
is better for maintaining temporal coherence and reduce distracting
visual artifacts. A large number of candidate seed points are gener-
ated with a uniform distribution and high density. Each seed point
is used to generated a streamline. If there is no valid streamline
available (because there is already a streamline within a distance
threshold of this seed point or because the streamline would be
too short), the seed point is skipped. This process continues for
all seed points. The more seed points that are chosen, the more
likely that a seed point will be closer to an ‘ideal’ or ‘optimized’
seed point. The density of the visualization is also bound by the
density of seed points. If the minimum separation distance dmin is
small, then the number of seed points in the pool must be high or
that distance cannot be achieved.

Streamline density is controlled by maintaining a separation
distance d between streamlines. This separation distance d is
defined as d(x,y) = dmax− I(x,y)(dmax−dmin) and is used to de-
termine if a seed point is valid and when to terminate integration of
a streamline. The visualization space is divided into a uniform grid
with each cell equal to some value between dmin and dmax. Each
cell of this grid contains a list of points from other streamlines that
lie within that cell. A point query only needs to test against all
other points in the same cell and nearby cells; however, unlike Jo-
bard and Lefer’s method [JL97], all nearby cells within the search
distance must be checked since the density is not uniform over the
entire image.

Visual Effects
Streamlines are rendered as triangles instead of lines to allow

for tapering and width variation along the streamline. Since the
streamlines are oriented along one path, a single triangle strip
can be used to render the streamline by starting at one end and
alternating points between the left and right side of the streamline
until reaching the other end. By using a triangle strip instead
of several triangles, sending duplicate points to the GPU can be
avoided.

This optimization can be taken a step further. If two “col-
lapsed” triangles are added such that the end points are equal to
the end of one streamline and the beginning of another, all the
streamlines in the entire visualization can be rendered as a single
triangle strip (with the connecting triangles having 0 area and being
invisible). This optimization allows sending all the streamline data
to the GPU at once rather than in packets.



Figure 8. This illustration explains our approach to foveated visualization of volumetric data. The region around the identified center point of gaze is where

the step size for the rays cast into the scene have the lowest step size. We model the reduced visual acuity away from the center point of gaze by smoothly

transitioning the step size to medium step size and large step size.

Figure 9. Our streamlines with directional cues (left) and directed stream-

lines with foveated rendering (right) that eliminates visual clutter.

To create directed streamlines, opacity and thickness can
modulated by using a biased saw-tooth function. This makes the
streamline appear as a series of streaks, similar to brush strokes,
that conveys direction to the user. Figure 9 depicts our foveated
rendering with directed streamlines.

Performance Analysis
We conducted a performance evaluation on a MacBook Pro

(13-inch, 2017) running Mac OS 10.14.6 with an Intel Core i7 3.5
GHz processor with 16 GB RAM and an Intel Iris Plus Graph-
ics 650 graphics processor. The data was collected over multiple
datasets with ongoing interaction. As can be seen in Figure 10,
the foveated versions of directed and regular streamlines are con-
siderably faster than the full resolution versions. The foveated
version of the glyph visualization technique is fast too, but the full
resolution version is comparably fast. Our full resolution glyph
rendering algorithm has been considerably optimized to reduce
overlap and speed up rendering and so even though it shows all the
data in the full resolution version, it is quite fast. Table 1 shows the
minimum, average, and maximum framerates observed for these
techniques.

Volumetric Data Visualization
Raycasting is a common method for realistically visualizing

volumetric data and is particularly computationally intensive. The

Figure 10. Performance Analysis of Foveated Rendering of Vector data.

The graph shows that the frame rates obtained for foveated rendering of

streamlines and directed streamlines were consistently faster than full reso-

lution rendering of streamlines and directed streamlines. For glyph rendering,

the foveated rendering was faster as well but the full resolution rendering was

comparably fast.

Technique Full Resolution Foveated
Min Avg Max Min Avg Max

G 47.3 59.1 60.2 57.1 59.8 60.2
S 38.5 41.7 42.4 55.6 59.3 60.3
DS 25.8 43.4 46.4 58.7 59.9 60.3

Performance analysis of the techniques in terms of the frames
per second. G = Glyphs, S = Streamlines, and DS = Directed
Streamlines. The Foveated Streamlines and Directed Stream-
lines perform much better than the full resolution versions.
The foveated glyph visualization technique performs well but
so does the full resolution glyph visualization technique.

idea behind raycasting is that it simulates a ray of light from a
light source, through a scene, and to the viewer’s eye. As the
ray moves through the scene, it reflects and refracts off objects
and these bounces eventually contribute to the what the eye sees.
The algorithm reverses the calculation by starting from a view
point, projecting into each pixel in an image, and making its way
through the scene to a virtual light source. Lower bounds on
computation time depend on the desired visual effects such as



Figure 11. Foveated visualization can cause hard transitions as shown in

the figure on the right near the jaw of the mummy.

shadows or reflections, and the complexity of the scene. However,
the computation can be sped up by increasing the step size, or
how fast a ray travels through the scene. Computationally, the
step size refers to how much of a volume the ray moves in one
iteration of the light equation, ranging from sub-voxel to multi-
voxel steps. The step size directly impacts the computation time,
but also impacts the quality of the image. As shown in Figures 1
and 12, the difference in image quality is caused by changing the
step size.

In our foveated approach, we use the center of the user’s
gaze to adaptively modify the step size along the rays cast into the
scene. As the distance from the center of the gaze increases radially
outwards, we increase the step size in the raycasting algorithm.
This in turn leads to the faster generation of the raycasted image
and reduces interaction latency. Figure 8 shows a schematic that
describes our foveated approach. By changing the step size of the
raycasting algorithm based on distance to the central gaze point,
the user can fluidly explore larger volumes and computation is
dedicated most intensely areas being scrutinized by the user.

Image Quality Transitions
The goal of foveated visualization is to provide a seamless

experience to the user. If we are not careful about transitioning
smoothly between the region around the center of the gaze, the
user will see an abrupt transition such as that shown in Figure 11
around the jaw.

We explore the various ways in which we can transition from
the region of interest to the peripheral parts of the raycasted image.
We explore six different transitions: Linear, Sharp Cut, Medium
Cut, Smooth Cut, Slow Start, and Fast Start. We provide details
about the various transitions below. Figure 12(a) shows high
quality rendering with a constant small step size for all the rays
that leads to lower frame rates for interaction. On the other hand,
Figure 12(b) shows low quality rendering with raycasting with
a higher step size for all rays that leads to better frame rates for
interaction and low latency for users. The rest of the images in
Figure 12 show the various transitions in comparison with the
high-quality and low-quality (interactive) rendering options.

Linear Transition: For this transition from the region of
interest outward, the step size starts with the smallest step size
and linearly grows outward as the distance from the center point
of gaze increases. Equation below shows how the step size is
calculated for every ray with Min being the smallest step size, Max
being the largest step size, and Distance being the normalized

distance from the center point of gaze. Figure 12(f) shows the
linear transition.

StepSize = Min+Distance∗ (Max−Min)

Sharp Cut Transition: In this transition, the step size is
small for high quality rendering in the region of interest and high
for the rest of the rays outside a user-controllable radius around the
center of the gaze. For all our experiments, we set the normalized
radius around the center of the gaze to be 0.2. This transition
leads to a clear visual distinction between the region of interest
and the rest of the rendered image that is not desirable in foveated
visualization. Figure 12(c) shows the sharp cut transition with a
clear visual difference between the region of interest around the
center point of gaze and the surrounding area.

StepSize = Min
if Distance > Radius then

StepSize = Max
else

StepSize = Min
end if

Medium Cut Transition: In this transition, the step size is
small around the center point of gaze and slowly transitions out as
the distance from the center increases. The improved visual quality
difference is noticeable as compared to the Sharp Cut transition, but
it comes at a very small performance hit of around 10% depending
on the dataset being visualized. Figure 12(d) shows the medium
cut transition with less of a visible difference between the region
of interest and the surrounding region.

if Distance < Radius then
StepSize = Min+(Distance)2 ∗ (Max−Min)

else
StepSize = Min+

√
Distance∗ (Max−Min)

end if
Smooth Cut Transition: This is the smoothest transition

from the center of the gaze outward. The step size is small inside
the region of interest and slowly transitions to the maximum step
size as the distance increases outwards from the region of interest.
The visual quality obtained is the best with a frame rate that is
comparable to linear transition. Figure 12(e) shows the smooth cut
transition with high quality rendering similar to Figure 12(a) with
a 2.4x speedup in performance as compared to the high quality
version.

if Distance < Radius then
StepSize = Min+(Distance)2 ∗ (Max−Min)

else
StepSize = Min + (Radius)2 ∗ (Max − Min) +√

Distance−Radius∗ (Max−Min)
end if

Slow Start Transition: This transition starts with a lower
step size initially and slowly increases it as the distance from the
center of the gaze increases. It leads to better visual quality than
some of the other transitions. The equation below provides the
details of the transition to compute the step size for each individ-
ual ray being cast. Figure 12(h) shows the slow start transition
that leads to higher quality visualization as compared to fast start
(Figure 12(g)) but it also leads to a slow down in performance.

StepSize = Min+(Distance)2 ∗ (Max−Min)

Fast Start Transition: This transition increases the step size



quickly as the distance from the center of the gaze increases. This
leads to faster interaction rates with a noticeable drop in visual
quality as compared to the Slow Start transition. Figure 12(g)
shows the fast start transition that provides relatively lower quality
rendering as compared to Smooth Cut (Figure 12(e)) or Slow start
(Figure 12(h)).

StepSize = Min+
√

Distance∗ (Max−Min)

Performance Analysis

Technique Framerate
High quality rendering 8.68 fps
Low quality rendering 39.42 fps
Foveated with Sharp Cut transition 31.31 fps
Foveated with Medium Cut transition 24.64 fps
Foveated with Smooth Cut transition 20.94 fps
Foveated with Linear transition 21.19 fps
Foveated with Fast Start transition 31.12 fps
Foveated with Slow Start transition 15.56 fps

Framerates for volume visualization transition types. As can
be seen from Figure 12, Smooth Cut has the best tradeoff in
terms of high quality and interactive frame rates.

We conducted experiments on multiple volumetric datasets.
The application window size was set to 1000 * 1000 pixels. For
foveated rendering, the radius was set to 200 pixels (0.2). Based
on the gaze tracking, we measured the frame rate for each of the
variations in transitions introduced before. The supplementary
material has the detailed performance analysis for the various
datasets used in our experiments.

If we focus on high quality rendering, Slow Start would be
the best choice. The average improvement in frame rate compare
to minimum constant step size is 200%. If we focus on high
frame rate, Linear and Fast Start are good as they have 250% and
300% frame rate improvement on average. If we want the foveated
region to stand out to draw the viewer’s attention to specific regions,
Medium Cut and Sharp Cut work well with 280% and 400% frame
rate improvement on average. It is particularly hard to compare
and select the best technique but the Smooth Cut has the best
tradeoff in terms of high quality and interactive frame rates.

In general we found that the frame rates were lowest for Slow
Start, followed by Smooth Cut, Linear, Medium Cut, Fast Start,
and Sharp Cut. Sharp Cut has the highest frame rate for foveated
rendering due to the nature in which the step size is computed for
the entire image.

Conclusion and Future Work
We have shown in this paper that incorporating foveated

imaging into a rendering system can greatly improve performance
without noticeably impacting visual quality. Our techniques have
targeted both vector and volume visualizations, both of which have
technical considerations that needed to be integrated into this new
system.

Future work for this system includes extending to eye-
tracking approaches by identifying algorithms to stabilize the stim-
ulus during periods of visual fixation and providing user control
over parameters of the oculomotor events. We would also like to
conduct a user study to determine factors such as parameters in

our algorithms when users notice the transitions between high and
low resolutions and develop guidelines for step-sizes and wave
functions to weight the computational costs of those decisions with
the perceptual detection of change.
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